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Topological phases and the quantum spin Hall effect in three dimensions
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We show the existence of topological phases of Bloch insulators with time-reversal symmetry in three
dimensions. These phases are characterized by topological Z, invariants whose stability is studied using
band-touching arguments. Unlike insulators which break time-reveral symmetry, some of these topological
phases are intrinsically three dimensional. The number of invariants (four) needed to specify the phase of these
insulators also differs from the time-reversal-breaking case. The relation between these phases and the quantum

spin Hall effect in three dimensions is investigated.
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Topological phases, the most well known of which are
perhaps the integer and fractional quantum Hall states, are an
exciting set of condensed-matter systems. The integer quan-
tum Hall (IQH) phases can be characterized by a topological
invariant; have robust edge states and quantized response
properties; and can be realized in simple noninteracting mod-
els which break time-reversal symmetry (TRS).!?

Recently, it was realized that topological phases can also
exist in simple two-dimensional (2D) band insulators which
preserve TRS.> These insulators have two phases and are
said to be characterized by a topological Z, invariant. The
topological phases with a nontrivial value of this invariant
have robust edge states similar to the IQH states. The edge
states in these phases, unlike in the IQH effect, carry no net
charge current. They can, however, carry a spin current. In-
deed, it is in connection with the spin Hall effect that these
topological phases were unearthed.

Topological phases also exist in three dimensions in insu-
lators which break TRS.%® It is interesting, therefore, to in-
vestigate whether such phases can also exist in systems
which do not break TRS in three dimensions. We address this
question in this paper. Indeed, we shall see that there are
topological phases of time-reversal-symmetric insulators in
three dimensions that have no two-dimensional analogs. In
contrast, the IQH phases in three dimensions are directly
related to the IQH phases in two dimensions.®-® We propose
the three-dimensional (3D) quantum spin Hall effect (QSHE)
and investigate the connection between the topological
phases in three dimensions and the QSHE.

We first discuss the Z, invariant in two dimensions using
arguments based on band-touching and adiabatic continuity.
These help to provide an easy-to-follow and intuitive alter-
native understanding of the invariant. Using the framework
provided by these arguments, we then study the topological
phases of three-dimensional insulators and provide a classi-
fication of these phases.

1. Z, INVARIANT IN TWO DIMENSIONS

The Z, invariant associated with the topological phases
was first studied in terms of the zeroes of the Pfaffian of the
time-reversal operator among bands.* A different approach to
the Z, invariant was taken in Ref. 9 which clarified the con-
nection between the invariant and the edge states of the sys-
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tem and put the Z, classification on a firmer mathematical
footing. In that work, the Z, invariant was expressed in terms
of the Thouless-Kohmoto-Nightingale-de Nijs (TKNN)
numbers!? of wave functions which form a basis for the
vector space spanned by the occupied bands. The TKNN
numbers are integrals of the Berry curvature of the wave
functions in momentum space. If {c,} is the set of TKNN
numbers of these wave functions, then the Z, invariant is
given by the sum of the positive numbers in this set modulo
two.

The topological Z, invariant must be invariant under adia-
batic transformations of the Hamiltonian as well as continu-
ous transformations of the basis wave functions which keep
the ground state unchanged. To study the effects of both
types of transformations, it is convenient to associate with
the system a Hamiltonian of a particularly simple form,
which has the property that its ground state is the same as
that of the original system or is one which may be obtained
by an adiabatic deformation of the original Hamiltonian of
the system.

Let us first consider the case when there are two occupied
bands in the ground state. We associate with the ground state
a Hamiltonian'' of the form

H=H1+H2, (1)

where

H = f dzk[El(k)|M1><M1| + Ey(K)|up)uy|], (2
BZ
= | S B0 @)
BZ n>2

Here, n is the band index and the integral is taken over the
Brillouin zone. The energies E; and E, are less than zero
while E,>0 for n>2 and the Fermi energy E; is equal to
zero. Further, we assume that the Hamiltonian H is such that
|u;(k)) and |u,(k)) are locally continuous functions of the
momentum variables and can be uniquely defined.'?

The time-reversal symmetry of the Hamiltonian leads to
the condition E,(k)=E,(-k) and
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FIG. 1. A schematic figure showing the diabolical points in the
spectrum of the associated Hamiltonian.

Olu; (k) = [uy(— k),

where O is the time-reversal operator.

To study the effect of either an adiabatic variation of the
system or a continuous change in the basis, we consider an
adiabatic variation in the associated Hamiltonian. Let H(¢) be
a continuous set of Hamiltonians such that H(¢) can be writ-
ten as a sum of H,(r) and H,(z) which have the same prop-
erties as H; and H, in Eq. (1) specified above. The TKNN
invariants or the Chern numbers for the two bands are then
individually conserved, and the sum of these two Chern
numbers is zero. (This follows from homotopy arguments of
the form presented in Ref. 9 or by a direct computation of the
Chern number in terms of the Berry phase by using the
TKNN formulae.! A simple physical argument for this fol-
lows from the observation that the Hall conductivity of a
system with time-reversal invariance is zero. Then using the
standard TKNN result,! which relates the Hall conductivity
to the sum of the Chern numbers, it follows that the sum of
the Chern numbers of these bands is zero.) It follows that the
quantity defined as |c|mod 2 where ¢ is the TKNN number of
either band is unchanged through such an adiabatic transfor-
mation.

Since the invariant is unaffected by any process where the
individual wave functions are continuously transformed, we
now consider a transformation of the associated Hamiltonian
where the Chern numbers of the bands can change. Suppose
that an isolated diabolical point occurs in the three-
dimensional parameter space at a point (7y,Kg). The bands
are then no longer continuous at this point. Due to time-
reversal invariance, a diabolical point must also occur at
(t9,—Kkg) as shown in Fig. 1. A two-level degeneracy is ge-
neric while a higher-level degeneracy is not.!> Without the

Oluy(0)y=~[u,(=k)),  (4)

loss of generality, one can thus write H\(?) in the vicinity of
the degeneracy points as

~ E,+FE
Hl(t,k)zm(t,k).a+%

I (5)
where the two indices of the o matrices correspond to the
two bands |u;) and |u,). Time-reversal invariance then dic-
tates that
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m(z,— k) =-m(,k). (6)

At the degeneracy point m(zy,k,)={0,0,0}.

As the parameter ¢ is further changed, the bands may split
apart again. However, as they separate, the bands might now
have a new set of Chern numbers whose sum has to be the
same as before the band collision (zero).'* The degeneracy
points may be visualized as monopoles which flow in and
out of the bands.

If one sets w=m/|m|, then the Chern number exchange
between the bands is given by'>

1
n(xg) = = ETIE (@ldo A do), (7)

where 2, is the surface of a small sphere enclosing the de-
generacy point in the three-dimensional space of points
(t,k,,k,). From the property of time-reversal invariance, it
follows that the Chern number exchange between a band and
its time-reversed counterpart at the two points (¢,,k) and
(t9,—kg) is exactly the same (in magnitude and sign). Hence
the total Chern number exchanged between bands is always
an even number.

For a system with multiple occupied pairs of bands in the
ground state, two kinds of “band collisions” can occur: (a) a
degeneracy between a band and its time-reversed counterpart
and (b) a degeneracy between two bands which are not re-
lated by time reversal. In the second type of band collision,
the fact that the time-reversed pairs before and after collision
have opposite Chern numbers, which add up to zero for each
pair, implies that if a band |a) changes its Chern number by
n, then the Chern number of ®|a) changes by —n,. These
preserve the net Z, invariant’

E Cn

;>0

E= mod 2, (8)

where the summation is over the set of bands which have
positive Chern numbers. The first kind of process also pre-
serves this invariant as evident from the arguments presented
earlier for the model with two occupied bands. These band-
touching arguments provide an alternative and intuitive un-
derstanding of the Z, invariant in two dimensions. In three
dimensions, we will map the topological phases of insulators
by showing that certain quantities which are invariant under
adiabatic transformations may be associated with the ground
states of the different phases.

II. TOPOLOGICAL PHASES IN THREE DIMENSIONS

The Brillouin zone in three dimensions is topologically
equivalent to the torus 7° and may be parameterized by the
set of points {(x,y,z)|-1=x,y,z=1} such that the time-
reversal operator ® maps the Bloch wave functions at the
point (x,y,z) to those at the point (—x,—y,—z). We consider
separately two different cases:

(1) let us choose an associated Hamiltonian with the same
ground-state wave function as the system in consideration
that can be written as a sum H,+H, as in Eq. (1) and such
that the corresponding eigenkets of H, are locally continuous
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FIG. 2. A representation of the Brillouin zone for a three-dimensional insulator. The two-dimensional planes whose Z, invariants specify
the topological phase are shaded for (a) the case when there are no diabolical points, and (b) when there are diabolical points in the spectrum

of the associated Hamiltonian.

at all points in the Brillouin zone. The Bloch wave functions
on the planes {x,y,z=0; x,y,z=1} get mapped on to them-
selves and satisfy the symmetries of the Bloch wave func-
tions in two dimensions. We can thus define a set of three Z,
invariants E,.,E. ,E,,, one for each of the planes x=0, y

Y2 Tzx Xy

=0, and z=0 [Fig. 2(a)],

En=| 2 ¢|mod2, 9)
c;y>0

E.=| 2 ¢lmod?2, (10)
c-’\:z>0

E,=| > ¢*|mod2, (11)
c;'l'x>0

where ¢”,¢)*, ¢ are the Chern numbers of the nth occupied
band for the different planes. Further, since by assumption
there are no diabolical points in the Brillouin zone, the Chern
numbers and hence the Z, invariant associated with the plane
x=1 is identical to the Z, invariant for the plane x=0. Similar
statements hold for the other two planes.

Let us now consider an adiabatic continuation of H,
where band touchings occur and split into Dirac points.
These can be thought of as monopoles of opposite charge
which can recombine after relative displacement through a
reciprocal lattice vector as explained in Ref. 16. Due to the
constraints of time-reversal invariance, however, the Chern
numbers can only change in such a way that the Z, invariants
for the 2D planes are preserved in the process. There are thus
three independent Z, invariants and a specification of these
serves to identify the topological phase in this case.

(2) Now consider ground states where the associated
Hamiltonian has isolated diabolical points at which the
eigenstates cannot be continuously defined. Let us call sets
of points of the form

T?I/Z)z+={(x’y’z)|0 =z= 1’_ 1= X,y = 1}’

Thm-={xy.2)-1=2=0-1=xy=1},

and similarly defined sets for the x and the y directions, 3D
half tori. We further divide these half tori into quarter tori
which are defined by the intersection of half tori such as
T?l A 7?1 12)z- N T(31 12)x— The half and quarter tori come in
pairs such as {T(;5).,, T{(},} which get mapped onto each
other under the projection of the time-reversal operator. We
call these complementary pairs. We consider a single pair of
time-reversed bands and a set of diabolical points (which
may be regarded as monopoles) which do not lie at the sur-
faces of any of the quarter tori. Time reversal maps these
monopoles in quarter tori to monopoles in their complemen-
tary quarter tori such that if a band collides with its time-
reversed counterpart, the charge that flows in at one mono-
pole to a band is the opposite of the charge that flows in at
the other monopole. If there is an odd number of such mono-
poles in the half torus T(31 12),—» then the Z, indices of the plane
z=0 and the plane z=1 are different while they are the same
if there is an even number of monopoles.!” Since these Z,
indices are homotopically stable, at least one pair of mono-
poles in the Brillouin zone cannot recombine and vanish in
the first case while all the monopoles can recombine and
vanish in the second. In the first case, therefore, the mono-
poles are thus trapped and hence stable. Further, from the
mapping of monopoles to their counterparts in quarter tori,
one can see that if a certain half torus has an odd number of
monopoles, so must all the other half tori. Hence the Z,
invariants of the planes y=1 and x=1 are uniquely deter-
mined from the Z, invariants of the planes x=0, y=0, z=0,
and z=1. Four Z, invariants are thus needed to specify the
topological phase.

In the case of multiple bands, one may simply evaluate
the monopole charge flowing into half the set of filled bands,
say, for instance, the set of bands with positive Chern num-
bers and half the set of those with Chern number zero. The
set of bands chosen has to be such that no two elements of
the set map onto each other under time reversal.

A complete set of Z, invariants is thus obtained, for ex-
ample, by choosing the Z, invariants of the planes x=0, y
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=0, z=0, and the plane x=1 as shown in Fig. 2(b). Alterna-
tively, one may take the fourth Z, invariant to be the differ-
ence of the Z, invariants of the planes x=1 and x=0. The
fourth Z, invariant defined in this way is nontrivial when
there is an odd number of monopoles while it is zero when
there is an even number of monopoles. The phases that have
no diabolical points in the associated Hamiltonian thus cor-
respond to a trivial value of the fourth Z, invariant. The
phases associated with a nontrivial value of the fourth Z,
invariant cannot be constructed by stacking layers of a 2D
QSHE system as opposed to the integer quantum Hall effect
(IQHE) case. Indeed, four topological invariants are needed
to characterize insulators with TRS while three suffice in the
case when TRS is broken.'® This is one of the key differ-
ences between the two cases. When time-reversal symmetry
is broken, such as in the presence of an external magnetic
field, the Z, indices are no longer invariant and hence, the
trapped monopoles may vanish.

Topological invariants of insulators with time-reversal
symmetry in three dimensions have been discussed in Refs.
19-21. Four topological invariants and 16 phases for time-
reversal-invariant insulators in three dimensions were de-
duced in these works which are in agreement with the current
work. Examples of the nontrivial topological phases have
also appeared.?!

III. QUANTUM SPIN HALL EFFECT IN THREE
DIMENSIONS

So far, we have not connected the topological phases in
three dimensions proposed above to measurable transport
properties. In two dimensions, the topological phases are as-
sociated with the QSHE, i.e., with models in which the spin
Hall response is quantized in units of e*/h. We first show
that the occurrence of a three-dimensional QSHE which is
characterized by a quantized spin Hall conductance in three
dimensions is possible. We then discuss the connections be-
tween the topological phases discussed above and the QSHE.

The possibility of the three-dimensional quantum Hall ef-
fect has been pointed out by Halperin et al.®® The three
independent Chern numbers for filled bands in three dimen-
sions play the same role in determining the quantized Hall
response as the single Chern number does in two dimen-
sions. When time-reversal symmetry is preserved, models
have been proposed where spin is a good quantum number
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(the Hamiltonian commutes with s.) and where a quantized
spin Hall current response is obtained in two dimensions.?>
The spin-current response arises from equal contributions
from the up and down spins J‘Y=%(J +=J)), each of which
has a quantized response to the external electric field, but in
opposite directions. A stack of layers of such a 2D material
with weak interlayer coupling such that the Fermi energy lies
in a band gap, will thus lead to a quantum spin Hall effect in
three dimensions as long as the spins are decoupled. The
spin-conductivity tensor can be written in the form

e
o= @ﬂjka» (12)
where G is a reciprocal lattice vector. A Hamiltonian which
displays such a quantized response in the k,=0 and k,=0
planes can be obtained by a simple generalization of the
two-dimensional model presented in Ref. 22. The stability of
the edge states is governed by the three-dimensional Z, in-
variants presented earlier, even though the spin Hall conduc-
tivity itself is not expected to be quantized when terms,
which mix up and down spins, are present. Since a nontrivial
value of the fourth Z, index is not possible without band
degeneracies that change the Z, invariants of a pair of bands
across a half torus, a quantized spin Hall response can only
be obtained when this index is zero.

We have thus classified the phases of band insulators with
time-reversal symmetry in three dimensions and found topo-
logical phases which are classified by topological Z, invari-
ants. We also introduced the phenomenon of the quantum
spin Hall effect in three dimensions and discussed the con-
nection between this phenomenon and the topological
phases. Since the topological phases are related directly to
the Chern numbers and these are, in turn, connected with the
presence of robust edge states,”® a natural connection be-
tween these topological phases and the existence of robust
edge states is expected.
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